Classical Mechanics

نویسنده

  • Giovanni Gallavotti
چکیده

here xi = (xi1, . . . , xid) are coordinates of the i-th particle and ∂xi is the gradient (∂xi1 , . . . , ∂xid); d is the space dimension (i.e. d = 3, usually). The potential energy function will be supposed “smooth”, i.e. analytic except, possibly, when two positions coincide. The latter exception is necessary to include the important cases of gravitational attraction or, when dealing with electrically charged particles, of Coulomb interaction. A basic result is that if V is bounded below the equation (1.1) admits, given initial data X0 = X(0), Ẋ0 = Ẋ(0), a unique global solution t → X(t), t ∈ (−∞,∞); otherwise a solution can fail to be global if and only if, in a finite time, it reaches infinity or a singularity point (i.e. a configuration in which two or more particles occupy the same point: an event called a collision). In Eq. (1.1) −∂xiV (x1, . . . ,xn) is the force acting on the points. More general forces are often admitted. For instance velocity dependent friction forces: they are not considered here because of their phenomenological nature as models for microscopic phenomena which should also, in principle, be explained in terms of conservative forces (furthermore, even from a macroscopic viewpoint, they are rather incomplete models as they should be considered together with the important heat generation phenomena that accompany them). Another interesting example of forces not corresponding to a potential are certain velocity dependent forces like the Coriolis force (which however appears only in non inertial frames of reference) and the closely related Lorentz force (in electromagnetism): they could be easily accomodated in the upcoming Hamiltonian formulation of mechanics, see Appendix A2. The action principle states that an equivalent formulation of the equations (1.1) is that a motion t → X0(t) satisfying (1.1) during a time interval [t1, t2] and leading from X = X0(t1) to X 2 = X0(t2), renders stationary the action

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

دینامیک کوانتومی ذره جرم‌دار روی دوسیتر 3+1

 The phase space which is related to the motion of massive particle on 1+3- De sitter space is a 3-dimensional complex sphere. Our main aim in this study is discribing this movement in the frame quantum mechanics. Transfering from classical mechanic to quantum mechanics is possible by means of coherent states. Thus, after determination of this state, we quantize some of the classical observables.

متن کامل

Biaxial Buckling and Bending of Smart Nanocomposite Plate Reinforced by CNTs using Extended Mixture Rule Approach

In this research, the buckling and bending behaviour of smart nanocomposite plate reinforced by single- walled carbon nanotubes (SWCNTs) under electro-magneto-mechanical loadings is studied. The extended mixture rule approach is used to determine the elastic properties of nanocomposite plate. Equilibrium equations of smart nanocomposite plate are derived using the Hamilton’s principle based on ...

متن کامل

Lateral Vibrations of Single-Layered Graphene Sheets Using Doublet Mechanics

This paper investigates the lateral vibration of single-layered graphene sheets based on a new theory called doublet mechanics with a length scale parameter. After a brief reviewing of doublet mechanics fundamentals, a sixth order partial differential equation that governs the lateral vibration of single-layered graphene sheets is derived. Using doublet mechanics, the relation between natural f...

متن کامل

مکانیک کوانتومی ناجابجایی در حوالی یک جسم سنگین

In this study, the noncommutative problems of quantum mechanics in the presence of the classical gravitation field are investigated. It is shown that spaectime will fail by Schwarzschild metric, and classical response to the gravitational field, will be equal to the change in the geodesic derivation equation

متن کامل

Classical Extensions, Classical Representations and Bayesian Updating in Quantum Mechanics

I review the formalism of classical extensions of quantum mechanics introduced by Beltrametti and Bugajski, and compare it to the classical representations discussed e.g. by Busch, Hellwig and Stulpe and recently used by Fuchs in his discussion of quantum mechanics in terms of standard quantummeasurements. I treat the problem of finding Bayesian analogues of the state transition associated with...

متن کامل

Quantum Mechanics on a Noncommutative Geometry

Quantum mechanics in its presently known formulation requires an external classical time for its description. A classical spacetime manifold and a classical spacetime metric are produced by classical matter fields. In the absence of such classical matter fields, quantum mechanics should be formulated without reference to a classical time. If such a new formulation exists, it follows as a conseq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1983